五边形数定理
<p>关于欧拉函数的展开式
<img src="https://www.showdoc.com.cn/server/api/attachment/visitfile/sign/3dd377c0708fbfa56e372ba0eca840cd" alt="" /></p>
<p>与分割函数$$p(x)$$(x分成多少个自然数之和)关系
<img src="https://www.showdoc.com.cn/server/api/attachment/visitfile/sign/65b7cf7912235367c68f906e4032be92" alt="" />
有
<img src="https://www.showdoc.com.cn/server/api/attachment/visitfile/sign/3e66a5de9e507951f6e4501d7d99e1e3" alt="" />
可得
<img src="https://www.showdoc.com.cn/server/api/attachment/visitfile/sign/de6ce4c7190f6e1892a3658cbb826400" alt="" /></p>
<pre><code>$$\prod\limits_{n=1}^{\infty}(1-x^n)=\sum\limits_{k=1}^{\infty}(-1)^kx^{\frac{k(k\pm 1)}{2}}$$
$$=1-x-x^2+x^5+x^7-x^{12}-x^{15}+x^{22}+x^{26}\dots$$</code></pre>
<pre><code>$$\frac{1}{\phi(x)}=\sum\limits_{k=0}^{\infty}p(x)x^k$$
$$(1-x-x^2+x^5+x^7-x^{12}-x^{15}+x^{22}\dots)(1+p(1)x+p(2)x^2\dots)=1$$
$$p(n)=p(n-1)+p(n-2)-p(n-5)-p(n-7)+...$$</code></pre>