python


5、词向量

<pre><code class="language-python">""" This is a implementation of Word2Vec using numpy. Uncomment the print functions to see Word2Vec in action! Also remember to change the number of epochs and set training_data to training_data[0] to avoid flooding your terminal. A Google Sheet implementation of Word2Vec is also available here - https://docs.google.com/spreadsheets/d/1mgf82Ue7MmQixMm2ZqnT1oWUucj6pEcd2wDs_JgHmco/edit?usp=sharing Have fun learning! Author: Derek Chia Email: derek@derekchia.com """ # https://ai.yanxishe.com/page/TextTranslation/1317 中译参考 import numpy as np from collections import defaultdict ## Randomly initialise # 随机的初始化参数 getW1 = [[0.236, -0.962, 0.686, 0.785, -0.454, -0.833, -0.744, 0.677, -0.427, -0.066], [-0.907, 0.894, 0.225, 0.673, -0.579, -0.428, 0.685, 0.973, -0.070, -0.811], [-0.576, 0.658, -0.582, -0.112, 0.662, 0.051, -0.401, -0.921, -0.158, 0.529], [0.517, 0.436, 0.092, -0.835, -0.444, -0.905, 0.879, 0.303, 0.332, -0.275], [0.859, -0.890, 0.651, 0.185, -0.511, -0.456, 0.377, -0.274, 0.182, -0.237], [0.368, -0.867, -0.301, -0.222, 0.630, 0.808, 0.088, -0.902, -0.450, -0.408], [0.728, 0.277, 0.439, 0.138, -0.943, -0.409, 0.687, -0.215, -0.807, 0.612], [0.593, -0.699, 0.020, 0.142, -0.638, -0.633, 0.344, 0.868, 0.913, 0.429], [0.447, -0.810, -0.061, -0.495, 0.794, -0.064, -0.817, -0.408, -0.286, 0.149]] getW2 = [[-0.868, -0.406, -0.288, -0.016, -0.560, 0.179, 0.099, 0.438, -0.551], [-0.395, 0.890, 0.685, -0.329, 0.218, -0.852, -0.919, 0.665, 0.968], [-0.128, 0.685, -0.828, 0.709, -0.420, 0.057, -0.212, 0.728, -0.690], [0.881, 0.238, 0.018, 0.622, 0.936, -0.442, 0.936, 0.586, -0.020], [-0.478, 0.240, 0.820, -0.731, 0.260, -0.989, -0.626, 0.796, -0.599], [0.679, 0.721, -0.111, 0.083, -0.738, 0.227, 0.560, 0.929, 0.017], [-0.690, 0.907, 0.464, -0.022, -0.005, -0.004, -0.425, 0.299, 0.757], [-0.054, 0.397, -0.017, -0.563, -0.551, 0.465, -0.596, -0.413, -0.395], [-0.838, 0.053, -0.160, -0.164, -0.671, 0.140, -0.149, 0.708, 0.425], [0.096, -0.995, -0.313, 0.881, -0.402, -0.631, -0.660, 0.184, 0.487]] class word2vec(): def __init__(self): self.n = settings['n'] # 10 self.lr = settings['learning_rate'] # 0.01 self.epochs = settings['epochs'] # 50 self.window = settings['window_size'] # 2 def generate_training_data(self, settings, corpus): # Find unique word counts using dictonary word_counts = defaultdict(int) # #******************************* # 这里row是遍历行 for row in corpus: for word in row: word_counts[word] += 1 ######################################################################################################################################################### # row: ['natural', 'language', 'processing', 'and', 'machine', 'learning', 'is', 'fun', 'and', 'exciting'] # 遍历row 使用defaultdict 计算词出现的个数 生成int 型 dict # print(word_counts) # # # defaultdict(&lt;class 'int'&gt;, {'natural': 1, 'language': 1, 'processing': 1, 'and': 2, 'machine': 1, 'learning': 1, 'is': 1, 'fun': 1, 'exciting': 1}) # ######################################################################################################################################################### # 9个不同的单词 ## How many unique words in vocab? 9 self.v_count = len(word_counts.keys()) ######################### # print(self.v_count) # # 9 # ######################### # 生成词字典 # Generate Lookup Dictionaries (vocab) self.words_list = list(word_counts.keys()) ################################################################################################# # print(self.words_list) # # ['natural', 'language', 'processing', 'and', 'machine', 'learning', 'is', 'fun', 'exciting'] # ################################################################################################# # 使用enumerate()枚举函数 生成词序号 # enumerate() 函数用于将一个可遍历的数据对象(如列表、元组或字符串)组合为一个索引序列,同时列出数据和数据下标,一般用在 for 循环当中。 # 下面的i, word是枚举后的下标和数据,利用下标和数据组成字典 # Generate word:index self.word_index = dict((word, i) for i, word in enumerate(self.words_list)) ############################################################################################################################# # print(self.word_index) # # # {'natural': 0, 'language': 1, 'processing': 2, 'and': 3, 'machine': 4, 'learning': 5, 'is': 6, 'fun': 7, 'exciting': 8} # ############################################################################################################################# # 生成序号对应的词 方法同上 # Generate index:word self.index_word = dict((i, word) for i, word in enumerate(self.words_list)) ############################################################################################################################# # print(self.index_word) # # {0: 'natural', 1: 'language', 2: 'processing', 3: 'and', 4: 'machine', 5: 'learning', 6: 'is', 7: 'fun', 8: 'exciting'} # ############################################################################################################################# training_data = [] # 这里sentence是遍历输出每一个元素 # print(sentence) # ['natural', 'language', 'processing', 'and', 'machine', 'learning', 'is', 'fun', 'and', 'exciting'] # Cycle through each sentence in corpus for sentence in corpus: sent_len = len(sentence) # Cycle through each word in sentence for i, word in enumerate(sentence): # Convert target word to one-hot # 将目标词转为 onehot 如:sentence[0]: natural转为onehot编码:[1, 0, 0, 0, 0, 0, 0, 0, 0] w_target = self.word2onehot(sentence[i]) # Cycle through context window w_context = [] # Note: window_size 2 will have range of 5 values # 窗口为2时,前后 包括自身 有5个值 # for i in range(1,3) i可以取到 1、 2 取不到3 ,所以下面是 i + self.window+1 for j in range(i - self.window, i + self.window+1): # Criteria for context word # 1、目标词不是上下文 体现在(j != i) # 2、Index必须大于等于0 否则报错 # 3、Index必须小于等于 sentence的长度 # 1. Target word cannot be context word (j != i) # 2. Index must be greater or equal than 0 (j &gt;= 0) - if not list index out of range # 3. Index must be less or equal than length of sentence (j &lt;= sent_len-1) - if not list index out of range if j != i and j &lt;= sent_len-1 and j &gt;= 0: # Append the one-hot representation of word to w_context # 把上下文的 one-hot加入w_context列表中 w_context.append(self.word2onehot(sentence[j])) # print(sentence[i], sentence[j]) ######################### # Example: natural # # natural language # # natural processing # # ****************** # # Example: language # # language natural # # language processing # # language append # ######################### # training_data contains a one-hot representation of the target word and context words ################################################################################################# # Example: # # [Target] natural, [Context] language, [Context] processing # # print(training_data) # # [[[1, 0, 0, 0, 0, 0, 0, 0, 0], [[0, 1, 0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0, 0, 0]]]] # ################################################################################################# # 返回输出 目标词与上下文 组成的list training_data.append([w_target, w_context]) return np.array(training_data) def word2onehot(self, word): # word_vec - initialise a blank vector # 初始化一个空向量 0向量 也可以使用np.zeros(self.v_count) word_vec = [0 for i in range(0, self.v_count)] # Alternative - np.zeros(self.v_count) ############################# # print(word_vec) # # [0, 0, 0, 0, 0, 0, 0, 0] # ############################# # Get ID of word from word_index # 得到词的id编号 word_index = self.word_index[word] # Change value from 0 to 1 according to ID of the word # 根据目标词的编号 把该处0变为1 如词的id为0 即把第一位0变为1 # [1, 0, 0, 0, 0, 0, 0, 0, 0] word_vec[word_index] = 1 return word_vec def train(self, training_data): # Initialising weight matrices # np.random.uniform(HIGH, LOW, OUTPUT_SHAPE) # https://docs.scipy.org/doc/numpy-1.15.1/reference/generated/numpy.random.uniform.html self.w1 = np.array(getW1) self.w2 = np.array(getW2) # self.w1 = np.random.uniform(-1, 1, (self.v_count, self.n)) # self.w2 = np.random.uniform(-1, 1, (self.n, self.v_count)) # Cycle through each epoch # 循环迭代epochs个周期 for i in range(self.epochs): # Intialise loss to 0 self.loss = 0 # Cycle through each training sample # w_t = vector for target word, w_c = vectors for context words # 循环迭代每个训练样本 目标向量、及上下文向量 for w_t, w_c in training_data: # Forward pass # 1. predicted y using softmax (y_pred) 2. matrix of hidden layer (h) 3. output layer before softmax (u) # 前向传播 y_pred, h, u = self.forward_pass(w_t) ######################################### # print("Vector for target word:", w_t) # # print("W1-before backprop", self.w1) # # print("W2-before backprop", self.w2) # ######################################### # Calculate error # 计算误差 # 1. For a target word, calculate difference between y_pred and each of the context words # 2. Sum up the differences using np.sum to give us the error for this particular target word EI = np.sum([np.subtract(y_pred, word) for word in w_c], axis=0) ######################### # print("Error", EI) # ######################### # Backpropagation # 反向传播 更新权重 # We use SGD to backpropagate errors - calculate loss on the output layer self.backprop(EI, h, w_t) ######################################### #print("W1-after backprop", self.w1) # #print("W2-after backprop", self.w2) # ######################################### # Calculate loss # 计算损失 # There are 2 parts to the loss function # Part 1: -ve sum of all the output + # Part 2: length of context words * log of sum for all elements (exponential-ed) in the output layer before softmax (u) # Note: word.index(1) returns the index in the context word vector with value 1 # Note: u[word.index(1)] returns the value of the output layer before softmax self.loss += -np.sum([u[word.index(1)] for word in w_c]) + len(w_c) * np.log(np.sum(np.exp(u))) ############################################################# # Break if you want to see weights after first target word # # break # ############################################################# print('Epoch:', i, "Loss:", self.loss) def forward_pass(self, x): # x is one-hot vector for target word, x shape (9,) # x是1*9的行向量 self.w1 9*10 得到1*10 的行向量 h # Run through first matrix (w1) to get hidden layer - 10x9 dot 9x1 gives us 10x1 h = np.dot(x, self.w1) # Dot product hidden layer with second matrix (w2) - 9x10 dot 10x1 gives us 9x1 # h 1*10 self.w2 10*9 得到 1*9 的行向量 u u = np.dot(h, self.w2) # Run 1x9 through softmax to force each element to range of [0, 1] - 1x8 y_c = self.softmax(u) return y_c, h, u ''' u array([ 0.443687, -0.674272, 1.322973, -0.149951, 1.14293 , -2.073111, -0.635283, 0.516231, 1.21318 ]) softmax(u) 归一化到[0,1]之间 array([0.10044958, 0.03284163, 0.24200101, 0.05547974, 0.20212754, 0.00810805, 0.03414738, 0.10800742, 0.21683765]) ''' def softmax(self, x): e_x = np.exp(x - np.max(x)) return e_x / e_x.sum(axis=0) def backprop(self, e, h, x): # https://docs.scipy.org/doc/numpy-1.15.1/reference/generated/numpy.outer.html # Column vector EI represents row-wise sum of prediction errors across each context word for the current center word # Going backwards, we need to take derivative of E with respect of w2 # h - shape 10x1, e - shape 9x1, dl_dw2 - shape 10x9 # x - shape 9x1, w2 - 10x9, e.T - 9x1 dl_dw2 = np.outer(h, e) dl_dw1 = np.outer(x, np.dot(self.w2, e.T)) ######################################## # print('Delta for w2', dl_dw2) # # print('Hidden layer', h) # # print('np.dot', np.dot(self.w2, e.T)) # # print('Delta for w1', dl_dw1) # ######################################### # Update weights # 更新权重 self.w1 = self.w1 - (self.lr * dl_dw1) self.w2 = self.w2 - (self.lr * dl_dw2) # Get vector from word def word_vec(self, word): # 权重w1是个list w1[w_index]取该list中第几个向量 # 权重list中存的是全部词的向量 所以传进改词的序号后就能得到该词的向量 w_index = self.word_index[word] v_w = self.w1[w_index] print(self.w1) return v_w # Input vector, returns nearest word(s) # top_n输出几个相关的词 def vec_sim(self, word, top_n): # 当前词转为向量 v_w1 = self.word_vec(word) word_sim = {} # 遍历词的长度次v_count for i in range(self.v_count): # 遍历寻找最相近的 # Find the similary score for each word in vocab v_w2 = self.w1[i] theta_sum = np.dot(v_w1, v_w2) theta_den = np.linalg.norm(v_w1) * np.linalg.norm(v_w2) theta = theta_sum / theta_den word = self.index_word[i] word_sim[word] = theta words_sorted = sorted(word_sim.items(), key=lambda kv: kv[1], reverse=True) for word, sim in words_sorted[:top_n]: print(word, sim) ##################################################################### # 一些超参数 settings = { 'window_size': 2, # context window +- center word 目标单词左右两端最近的两个单词视为上下文单词 'n': 10, # 单词嵌入的纬度 通常100-300不等dimensions of word embeddings, also refer to size of hidden layer 'epochs': 50, # 训练迭代周期 number of training epochs 'learning_rate': 0.01 # 学习率 learning rate } text = "natural language processing and machine learning is fun and exciting" # 大小写没有关系 # Note the .lower() as upper and lowercase does not matter in our implementation # 得到的单词列表 # [['natural', 'language', 'processing', 'and', 'machine', 'learning', 'is', 'fun', 'and', 'exciting']] corpus = [[word.lower() for word in text.split()]] # Initialise object # 初始化对象 w2v = word2vec() # 将语料库转换one-hot编码表示 以方便Word2vec模型用来训练 # 生成训练数据 # Numpy ndarray with one-hot representation for [target_word, context_words] training_data = w2v.generate_training_data(settings, corpus) print(training_data) # Training w2v.train(training_data) print('****************************') # Get vector for word # 得到词的向量 word = "machine" vec = w2v.word_vec(word) print(word, vec) # Find similar words # 输出最相近的3个单词 w2v.vec_sim("machine", 3) </code></pre>

页面列表

ITEM_HTML